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What is physical parameterization?

Characteristic scales of 
atmospheric processes

 Atmospheric motions have 

different scales.

 Climate model resolutions:  

Regional: 50 km                 
Global: 100~200 km    

 Sub-grid scale processes:    
Atmospheric processes with 
scales can not be explicitly 
resolved by models. 

 Physical parameterization:
To represent the effect of sub-
grid processes by using 
resolvable scale fields.



Why do we need physical parameterization?

 Dynamic core of models  Model physics:

● Processes such as phase 
change of the water are 
in too small scale and too 
complex. 

● Processes such as cloud 
microphysics are poorly 
understood.

● Computer is not powerful 
enough.
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What should be parameterized ?

 Radiation transfer.

 Surface processes. 

 Vertical turbulent 
processes. 

 Clouds and large-
scale condensation.

 Cumulus convection.

 Gravity wave drag. 16 major  physical processes in climate system. (from 
http://www.meted.ucar.edu/nwp/pcu1/ic4/frameset.htm)

Model Physics include:



How do we do parameterization in

numerical models?

 Ignore some processes (in simple models).

 Simplifications of complex processes based 
on some assumptions.

 Statistical/empirical relationships and 
approximations based on observations.

 Nested models and super-
parameterization: Embed a cloud model as a 
parameterization into climate models. 



Clouds effects in the climate system

Physical processes and interactions.
(from Arakawa, 2004)

 Clouds radiaton effects: 
modifying  the absorption, 
scattering, emission.

 Clouds influence PBL:         
the vertical transport of 
heat, moisture and 
momentum.

 Clouds hydrological 
effects: 
condensation,evaporation 
and precipitation.



Cumulus convective Parameterization schemes

 Arakawa – Schubert 

scheme.

 Betts – Miller scheme.

 Kuo scheme. 
Early stage of cumulus 
development.

Mature stage of cumulus 

development. 

This storm has reached an upper-

level inversion, forming an anvil-
shape to the cloud.



2.  Kuo scheme

 Simple scheme from Kuo(1965, 

1974)

 Widely used in GCMs for deep 

convection. 

 Basic idea:

• The rate of precipitation is balanced by the 
rate of horizontal convergence of moisture 
and surface evaporation.

 Limitations:

• Too simple, can not represent the realistic 
physical behavior of convection.

• Can not represent shallow convection

• b is a constant. 
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● Radar observed rainfall(dashed line) and  rainfall 

diagnosed from Kuo scheme(solid line) for a period of 
18 days during GATE. (From Krishnamurti et al. 

(1980))



3.  Betts – Miller scheme

 Betts 1986, Betts and Miller 1986

 Basic idea: 

• To relax temperature and mixing ratio profile back to reference profiles in
the unstable layer.

• R represent reference profile, τ is relaxation

• time scale.

• Deep convection and shallow convection are considered separately:

 Deep convection: if the depth of the convective layer exceeds a specified value. The
reference profile are empirically determined from observations.

 Shallow convection: when the depth of the convective layer is less than the value, it
will not produce precipitation.

 Limitations:

• A fixed reference profile of RH may cause problems in climate models.

• Changes below cloud base have no influence.
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4  Arakawa – Schubert scheme

 Complex scheme from Arakawa and Schubert 1974.

 Basic idea:

• Assume convection can be represented as an ensemble of entraining plumes
with different height and entrainment rates. Convection keeps the atmosphere
nearly neutral.

• Cloud work function : measure of moist convective instability of
each type of cloud.

• Quasi-equilibrium assumption:

• Convective tendencies are very fast.

• So large scale tendencies approximately

• balances the convective tendencies.

 Limitations: 

• Complexity, take longer time

• Requires detailed cloud ensemble model
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Schematic of an ensemble of cumulus clouds.
(from Trenberth, 1992)



The problems in parameterization

 The current parameterization schemes are too simple 

to describe the nature of the processes.

 Our knowledge about physical processes and feedback 

mechanism limits the improvement of 
parameterization.

 Superparameterization seems to be a better way to  
represent of physical processes comparing with 
conventional parameterization.

• It is only used in cloud processes (CRM). 

• Computational costs are very expensive, about 100 ~ 1000 
times more than the conventional parameterization.  



Summary

 Parameterization is a method to represent the

effects of physical processes which are too small or

too complex or poorly understood.

 The importance of parameterization for weather

and climate prediction has been well recognized

and a lot of works have been done to improve

physical parameterization. But, parameterization

has not been a mature subject till now.

 The best way to improve parameterization is to

understand the physical processes better by

observations and high resolution simulations .



Elements of atmospheric 

physics: radiation and clouds



Outline

• Introduction: radiation and climate

• Physics parametrizations

– Boundary layer

– Convection

– Gravity wave drag

– Clouds

– Precipitation

– Radiation

• What do we still need to know?





• Shortwave: atmosphere is mostly transparent

• Longwave: atmosphere is mostly opaque

Spectral distribution of radiation
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Composition of the Earth’s atmosphere
Gas Parts by volume Interaction

Nitrogen (N2) 780,840 ppmv (78.084%) SW (Rayleigh)

Oxygen (O2) 209,460 ppmv (20.946%) SW (Ray+abs)

Water vapour (H2O) ~0.40% full atmosphere, surface ~1%-4% LW, SW (abs)

Argon (Ar) 9,340 ppmv (0.9340%)

Carbon dioxide (CO2) 390 ppmv (0.039%) rising LW, SW (abs)

Neon (Ne) 18.18 ppmv (0.001818%)

Helium (He) 5.24 ppmv (0.000524%)

Methane (CH4) 1.79 ppmv (0.000179%) rising LW

Krypton (Kr) 1.14 ppmv (0.000114%)

Hydrogen (H2) 0.55 ppmv (0.000055%)

Nitrous oxide (N2O) 0.319 ppmv (0.00003%) rising LW

Carbon monoxide (CO) 0.1 ppmv (0.00001%)

Xenon (Xe) 0.09 ppmv (9×10
−6

%) (0.000009%)

Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10
−6

%) LW, SW (abs)

SW “shortwave” solar radiation: Rayleigh scattering (blue sky) or absorption

LW “longwave” terrestrial infrared radiation: absorbing greenhouse gases

http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Water_vapor
http://en.wikipedia.org/wiki/Argon
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Neon
http://en.wikipedia.org/wiki/Helium
http://en.wikipedia.org/wiki/Methane
http://en.wikipedia.org/wiki/Krypton
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Nitrous_oxide
http://en.wikipedia.org/wiki/Carbon_monoxide
http://en.wikipedia.org/wiki/Xenon
http://en.wikipedia.org/wiki/Ozone




The total energy received from the sun 

per unit time is πR2S where R is the 

radius of the Earth. The total area of 

the Earth is, however, 4πR2. Therefore 

the time averaged energy input rate is 

S/4 over the whole Earth. Hence,

where α is the planetary or 

system albedo, S is the solar 

constant (1370 w m-2) and σ is 

the Stefan – Boltzmann 

constant (5.67x10-8 Wm-2K-4).







Global energy flows

• Trenberth et al. (2009); modification of Kiehl & Trenberth (1997)







What about

climate prediction?

Emission 
scenarios

Year-to-year 
variability

Spread 
between 
models

Models with a strong positive 
cloud radiative feedback (e.g. 
cloud cover decreases in a 
warmer climate)

Models with a 
near-zero cloud 
feedback 
(clouds stay 
about the same)

• Clouds and 

radiation are key to 

climate prediction!



Conservation equations for 

gridbox-mean quantities in a model
• Mass

• Thermodynamic energy

• Water vapour

• Momentum (acceleration = force per unit mass)
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• Condensation/evaporation
• Precipitation
• Transport by turbulence
• Transport by deep convection

• Gravity wave drag
• Transport by turbulence
• Transport by deep convection

• Radiation
• Latent heat release
• Transport by turbulence
• Transport by deep convection

Old fashioned division: terms on 
the left are “dynamics”, terms 
on the right are “physics”

Processes in italics are purely 
due to unresolved processes: 
would be unnecessary in a high 
resolution model (e.g. 100 m)



Processes to be parametrized

• These processes transport energy, water and momentum vertically 

much faster than the resolved winds



3 types of physical parametrization 

in atmospheric models
1. Processes occurring at scales smaller than the grid-scale so not 

explicitly represented

– Convection, boundary-layer turbulent transport, gravity wave 

drag

– Anything carried by the wind is transported (momentum, heat, 

water, chemicals, aerosols)

2. Processes that contribute to internal heating (diabatic)

– Radiative transfer and latent heat release

– Both strongly affected by the cloud representation

3. Process that involve additional prognostic model variables (i.e. 

solve an equation for d/dt of the variable)

– Carbon cycle, chemistry, aerosols etc.

– Land surface processes (ice, soil, vegetation, urban areas)

This talk covers only the first two



How does sub-grid motion affect 

the mean flow?

• Consider equation for any quantity q (could 
be u, v,  etc)

where

• Substituting Reynolds averaged quantities

• and averaging leads to vertical transport by 
eddies 
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Vertical flux of q due to sub-grid deviations 
of wind from its gridbox-mean value



Boundary layer transports
• Simplest approach: flux is proportional to 

gradient

so

• A diffusion-like term where K is the eddy diffusivity

• If can parametrize K then have a closed set of equations

• Three main sources of turbulence in boundary layer:

– Wind shear, particularly near the surface

– Convective instability due to surface shortwave heating

– Convective instability due to cloud-top longwave cooling
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Shear-induced mixing
• Wind goes to zero 

at the surface

• Hence must be 

shear in the 

boundary layer

• Shear instability 

governed by the 

Richardson 

number:
22
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• Typical diffusivity 
parametrization:

• m is neutral mixing 
length (0-50m)


